Space Projections as Distributional Models for Semantic Composition

نویسندگان

  • Paolo Annesi
  • Valerio Storch
  • Roberto Basili
چکیده

Empirical distributional methods account for the meaning of syntactic structures by combining words according to algebraic operators (e.g. tensor product) acting over the corresponding lexical constituents. In this paper, a novel approach for semantic composition based on space projection techniques over the basic geometric lexical representations is proposed. In line with Frege’s context principle, the meaning of a phrase is modeled in terms of the subset of properties shared by the co-occurring words. In the geometric perspective here pursued, syntactic bi-grams are projected in the so called Support Subspace, aimed at emphasizing the semantic features shared by the compound words and better capturing phrase-specific aspects of the involved lexical meanings. State-of-the-art results are achieved in a well known phrase similarity task, used as a benchmark for this class of methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semantic Composition via Probabilistic Model Theory

Semantic composition remains an open problem for vector space models of semantics. In this paper, we explain how the probabilistic graphical model used in the framework of Functional Distributional Semantics can be interpreted as a probabilistic version of model theory. Building on this, we explain how various semantic phenomena can be recast in terms of conditional probabilities in the graphic...

متن کامل

Improving Sparse Word Representations with Distributional Inference for Semantic Composition

Distributional models are derived from cooccurrences in a corpus, where only a small proportion of all possible plausible cooccurrences will be observed. This results in a very sparse vector space, requiring a mechanism for inferring missing knowledge. Most methods face this challenge in ways that render the resulting word representations uninterpretable, with the consequence that semantic comp...

متن کامل

Literal and Metaphorical Senses in Compositional Distributional Semantic Models

Metaphorical expressions are pervasive in natural language and pose a substantial challenge for computational semantics. The inherent compositionality of metaphor makes it an important test case for compositional distributional semantic models (CDSMs). This paper is the first to investigate whether metaphorical composition warrants a distinct treatment in the CDSM framework. We propose a method...

متن کامل

Documents and Dependencies: an Exploration of Vector Space Models for Semantic Composition

In most previous research on distributional semantics, Vector Space Models (VSMs) of words are built either from topical information (e.g., documents in which a word is present), or from syntactic/semantic types of words (e.g., dependency parse links of a word in sentences), but not both. In this paper, we explore the utility of combining these two representations to build VSM for the task of s...

متن کامل

DISSECT - DIStributional SEmantics Composition Toolkit

We introduce DISSECT, a toolkit to build and explore computational models of word, phrase and sentence meaning based on the principles of distributional semantics. The toolkit focuses in particular on compositional meaning, and implements a number of composition methods that have been proposed in the literature. Furthermore, DISSECT can be useful to researchers and practitioners who need models...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012